Roman numerals are represented by seven different symbols: I
, V
, X
, L
, C
, D
and M
.
Symbol Value I 1 V 5 X 10 L 50 C 100 D 500 M 1000
For example, 2
is written as II
in Roman numeral, just two one’s added together. 12
is written as XII
, which is simply X + II
. The number 27
is written as XXVII
, which is XX + V + II
.
Roman numerals are usually written largest to smallest from left to right. However, the numeral for four is not IIII
. Instead, the number four is written as IV
. Because the one is before the five we subtract it making four. The same principle applies to the number nine, which is written as IX
. There are six instances where subtraction is used:
I
can be placed beforeV
(5) andX
(10) to make 4 and 9.X
can be placed beforeL
(50) andC
(100) to make 40 and 90.C
can be placed beforeD
(500) andM
(1000) to make 400 and 900.
Given an integer, convert it to a roman numeral.
Example 1:
Input: num = 3 Output: "III" Explanation: 3 is represented as 3 ones.
Example 2:
Input: num = 58 Output: "LVIII" Explanation: L = 50, V = 5, III = 3.
Example 3:
Input: num = 1994 Output: "MCMXCIV" Explanation: M = 1000, CM = 900, XC = 90 and IV = 4.
Constraints:
1 <= num <= 3999
Table of Contents
Solution:
def intToRoman(self, num: int) -> str:
symbols = ['I', 'V', 'X', 'L', 'C', 'D', 'M']
level = 0
roman_num = ''
while num:
remainder = num % 10
num = num // 10
if remainder == 0:
pass
elif remainder in [1,2,3]:
roman_num = symbols[level] * remainder + roman_num
elif remainder == 4:
roman_num = symbols[level] + symbols[level+1] + roman_num
elif remainder in [5,6,7,8]:
roman_num = symbols[level+1] + (remainder-5) * symbols[level] + roman_num
elif remainder == 9:
roman_num = symbols[level] + symbols[level+2] + roman_num
level += 2
return roman_num
Solution 2:
class Solution:
def intToRoman(self, num: int) -> str:
Dict={1:'I',4:'IV',5:'V', 9:'IX',10:'X',40:'XL',50:'L',90:'XC',100:'C',400:'CD',500:'D',900:'CM',1000:'M'}
output=''
while num:
keys=list(Dict.keys())
l=bisect.bisect_right(keys,num)
output=output+Dict[keys[l-1]]
num=num-keys[l-1]
return output
Solution 3 – Recursion:
class Solution:
def __init__(self):
self.symbol_table = [('M',1000),('CM',900),('D',500),('CD',400),('C',100),('XC',90),('L',50),('XL',40),('X',10),('IX',9),('V',5),('IV',4),('I',1)]
def intToRoman(self, num: int) -> str:
if num == 0:
return ""
for index,symbol in enumerate(self.symbol_table) :
#If modulo by the roman symbol is zero its bigger than num, try next symbol
if num%symbol[1] == num :
continue
#This is the biggest symbol which divides num into at least one part
if num%symbol[1] < num :
#How many symbols do we need?
factor = num // symbol[1]
#Index of this symbol in symbol table
x=index
break
roman=self.symbol_table[x][0]
roman_int_val=self.symbol_table[x][1]
return roman*factor + self.intToRoman(num - factor*roman_int_val)
def intToRoman(self, num: int) -> str:
symbols = ['I', 'V', 'X', 'L', 'C', 'D', 'M']
level = 0
roman_num = ''
while num:
remainder = num % 10
num = num // 10
if remainder == 0:
pass
elif remainder in [1,2,3]:
roman_num = symbols[level] * remainder + roman_num
elif remainder == 4:
roman_num = symbols[level] + symbols[level+1] + roman_num
elif remainder in [5,6,7,8]:
roman_num = symbols[level+1] + (remainder-5) * symbols[level] + roman_num
elif remainder == 9:
roman_num = symbols[level] + symbols[level+2] + roman_num
level += 2
return roman_num
class Solution:
def intToRoman(self, num: int) -> str:
Dict={1:'I',4:'IV',5:'V', 9:'IX',10:'X',40:'XL',50:'L',90:'XC',100:'C',400:'CD',500:'D',900:'CM',1000:'M'}
output=''
while num:
keys=list(Dict.keys())
l=bisect.bisect_right(keys,num)
output=output+Dict[keys[l-1]]
num=num-keys[l-1]
return output
Solution 3 – Recursion:
class Solution:
def __init__(self):
self.symbol_table = [('M',1000),('CM',900),('D',500),('CD',400),('C',100),('XC',90),('L',50),('XL',40),('X',10),('IX',9),('V',5),('IV',4),('I',1)]
def intToRoman(self, num: int) -> str:
if num == 0:
return ""
for index,symbol in enumerate(self.symbol_table) :
#If modulo by the roman symbol is zero its bigger than num, try next symbol
if num%symbol[1] == num :
continue
#This is the biggest symbol which divides num into at least one part
if num%symbol[1] < num :
#How many symbols do we need?
factor = num // symbol[1]
#Index of this symbol in symbol table
x=index
break
roman=self.symbol_table[x][0]
roman_int_val=self.symbol_table[x][1]
return roman*factor + self.intToRoman(num - factor*roman_int_val)
class Solution:
def __init__(self):
self.symbol_table = [('M',1000),('CM',900),('D',500),('CD',400),('C',100),('XC',90),('L',50),('XL',40),('X',10),('IX',9),('V',5),('IV',4),('I',1)]
def intToRoman(self, num: int) -> str:
if num == 0:
return ""
for index,symbol in enumerate(self.symbol_table) :
#If modulo by the roman symbol is zero its bigger than num, try next symbol
if num%symbol[1] == num :
continue
#This is the biggest symbol which divides num into at least one part
if num%symbol[1] < num :
#How many symbols do we need?
factor = num // symbol[1]
#Index of this symbol in symbol table
x=index
break
roman=self.symbol_table[x][0]
roman_int_val=self.symbol_table[x][1]
return roman*factor + self.intToRoman(num - factor*roman_int_val)