Rounding functions:
The rounding functions are the functions used to round a number to a specified number of digits or decimals. The NumPy package has several functions to perform rounding operations.
- around()
- rint()
- fix()
- floor()
- ceil()
- trunc()
around():
The around() function of NumPy is used to evenly round to the given number of decimals.
Syntax:
around(a, decimals=0)
The a parameter is the input array. The decimals parameter is the number of decimal places to round(default is 0).
import numpy as np
arr = np.array([1.2332, 4.7863, 5.3526, 7.3345])
print(np.around(arr, decimals = 2))
#Output:
[1.23 4.79 5.35 7.33]
The NumPy round_()
function also works similarly to around()
function and used for rounding values.
print(np.round_(arr, decimals = 1))
#Output:
[1.2 4.8 5.4 7.3]
rint():
The Numpy rint() function rounds the elements of a given array to the nearest integer.
Syntax:
rint(x)
The x parameter is the input array.
arr = np.array([1.2332, 4.7863, 5.3526, 7.3345])
print(np.rint(arr))
#Output:
[1. 5. 5. 7.]
fix():
The fix() function is used to round the array elements to the nearest integer towards zero. The fix()
function rounds an array of floats element-wise and returns an array of datatype float.
Syntax:
fix(x)
The x parameter is the input array of floats to be rounded.
arr = np.array([1.2332, 4.7863, 5.3526, 7.3345])
print(np.fix(arr))
#Output:
[1. 4. 5. 7.]
floor():
The floor() function returns the floor of the input array, element-wise. The floor of a number say num is a largest integer x such that x < = num.
Syntax:
floor(x)
The x parameter is the input array.
arr = np.array([-1.2332, -4.7863, 5.3526, 2.3345])
print(np.floor(arr))
#Output:
[-2. -5. 5. 2.]
ceil():
The ceil() function returns the ceiling of the input array, element-wise. The ceiling is a process of making the decimal numbers to the nearest upper integer. For example, when we ceil 6.17, 6.82 the results will be 7.0, 7.0 respectively.
Syntax:
ceil(x)
The x parameter is the input array.
arr = np.array([-1.2332, -4.7863, 5.3526, 2.3345])
print(np.ceil(arr))
#Output:
[-1. -4. 6. 3.]
trunc():
The trunc() function of NumPy returns the truncated value of the input, element-wise. The truncated value of a number num is the nearest integer x which is closer to zero than num is, and the fractional part of the number num is discarded.
Syntax:
trunc(x)
The x parameter is the input array.
arr = np.array([-1.2332, -4.7863, 5.3526, 2.3345])
print(np.trunc(arr))
#Output:
[-1. -4. 5. 2.]
Some commonly used functions:
- sum()
- prod()
- cumsum()
- cumprod()
- fmax()
- fmin()
- lcm()
- gcd()
- square()
- sqrt()
- cbrt()
- exp()
- log()
sum():
The NumPy sum() function calculates the sum of the input array elements over a given axis.
Syntax:
sum(a, axis=None, dtype=None)
The a parameter is the input array. The axis parameter is an axis or axes along which a sum is performed(can be integer value or tuple of integers). The dtype parameter is the datatype of the returned value.
arr = np.arange(1, 11,2.5).reshape(2,2)
print(np.sum(arr, axis=0, dtype = int))
#Output:
[ 7 11]
print(np.sum(arr, axis=1, dtype = float))
#Output:
[ 4.5 14.5]
prod():
The prod() function returns the product of array elements over a given axis.
Syntax:
prod(a, axis=None, dtype=None)
arr = np.arange(1, 11,2.5).reshape(2,2)
print(np.prod(arr, axis=0, dtype = int))
#Output:
[ 6 24]
print(np.prod(arr, axis=1, dtype = float))
#Output:
[ 3.5 51. ]
cumsum():
The cumsum() of NumPy is used to calculate the cumulative sum of the elements of the input array along a given axis.
Syntax:
cumsum(a, axis=None, dtype=None)
arr = np.arange(1, 11,2.5).reshape(2,2)
print(np.cumsum(arr, axis=0, dtype = float))
#Output:
[[ 1. 3.5]
[ 7. 12. ]]
print(np.cumsum(arr, axis=1, dtype = int))
#Output:
[[ 1 4]
[ 6 14]]
cumprod():
The cumprod() function returns the cumulative product of elements of the input array along a given axis.
Syntax:
cumprod(a, axis=None, dtype=None)
arr = np.arange(1, 11,2.5).reshape(2,2)
print(np.cumprod(arr, axis=1, dtype = float))
#Output:
[[ 1. 3.5]
[ 6. 51. ]]
print(np.cumprod(arr, axis=0, dtype = int))
#Output:
[[ 1 3]
[ 6 24]]
fmax():
The fmax() function of NumPy is used to get maximum values of the input array, element-wise. The fmax()
function compares two arrays and returns a new array containing the element-wise maxima.
Syntax:
fmax(x1, x2)
The x1 and x2 parameters are the input arrays, and the shape of x1 and x2 should be the same or broadcastable to a common shape.
a = np.array([[0,2], [5, 7]])
b = np.array([[3, 1], [8, 6]])
print(np.fmax(a, b))
#Output:
[[3 2]
[8 7]]
fmin():
The fmin() function calculates minimum values of the input array, element-wise. The fmin()
function compares two arrays and returns a new array containing the element-wise minima.
Syntax:
fmin(x1, x2)
a = np.array([[0,2], [5, 7]])
b = np.array([[3, 1], [8, 6]])
print(np.fmin(a, b))
#Output:
[[0 1]
[5 6]]
lcm():
The lcm() function is used to get the lowest common multiple of the two input arrays, element-wise.
Syntax:
lcm(x1, x2)
a = np.array([[0,2], [5, 7]])
b = np.array([[3, 1], [8, 6]])
print(np.lcm(a, b))
#Output:
[[ 0 2]
[40 42]]
gcd():
The NumPy gcd() function calculates the greatest common divisor of the two input arrays, element-wise.
Syntax:
gcd(x1, x2)
a = np.array([[0,2], [5, 7]])
b = np.array([[3, 1], [8, 6]])
print(np.gcd(a, b))
#Output:
[[3 1]
[1 1]]
square():
The square() function returns the square values of the input array, element-wise.
Syntax:
square(x)
The x parameter is the input array.
arr = np.arange(10)
print(np.square(arr))
#Output:
[ 0 1 4 9 16 25 36 49 64 81]
sqrt():
The sqrt() function of NumPy calculates the non-negative square root of the input array, element-wise.
Syntax:
sqrt(x)
The x parameter is the input array.
arr = np.arange(10)
print(np.sqrt(arr))
#Output:
[0. 1. 1.41421356 1.73205081 2. 2.23606798
2.44948974 2.64575131 2.82842712 3. ]
cbrt():
The cbrt() function of NumPy calculates the cube root of the input array, element-wise.
Syntax:
cbrt(x)
The x parameter is the input array.
arr = np.arange(10)
print(np.cbrt(arr))
#Output:
[0. 1. 1.25992105 1.44224957 1.58740105 1.70997595
1.81712059 1.91293118 2. 2.08008382]
exp():
The exp() function is used to get the exponential(e) of all elements in the input array.
Syntax:
exp(x)
The x parameter is the input array.
arr = np.arange(10)
print(np.exp(arr))
#Output:
[1.00000000e+00 2.71828183e+00 7.38905610e+00 2.00855369e+01
5.45981500e+01 1.48413159e+02 4.03428793e+02 1.09663316e+03
2.98095799e+03 8.10308393e+03]
log():
The log() function of NumPy is used to calculate the natural logarithm of the input array, element-wise.
Syntax:
log(x)
The x parameter is the input array.
arr = np.arange(1, 10)
print(np.log(arr))
#Output:
[0. 0.69314718 1.09861229 1.38629436 1.60943791 1.79175947
1.94591015 2.07944154 2.19722458]